Topologia

Grafo
Grafo
Nodo
Nodo
Nastro di Moebius

Nastro di Möbius
Toro
Toro
Fibrazione di Hopf
Sfera cornuta di Alexander
Sfera cornuta di Alexander
Insieme di Cantor
Insieme di Cantor
3-varietà (un'ipersfera)
3-varietà (un'ipersfera)
3-varietà (un'ipersfera)

La topologia (dal greco τόπος, tópos, "luogo", e λόγος, lógos, "studio", col significato quindi di "studio dei luoghi") è una branca della matematica che studia le proprietà delle figure e, in generale, degli oggetti matematici, che non cambiano quando viene effettuata una deformazione senza "strappi", "sovrapposizioni" o "incollature".

È una delle più importanti branche della matematica moderna. Concetti fondamentali come convergenza, limite, continuità, connessione o compattezza trovano nella topologia la loro migliore formalizzazione. Si basa essenzialmente sui concetti di spazio topologico, funzione continua e omeomorfismo.

Col termine topologia si indica anche la collezione di aperti che definisce uno spazio topologico. Per esempio, un cubo e una sfera sono oggetti topologicamente equivalenti (cioè omeomorfi), perché possono essere deformati l'uno nell'altro senza ricorrere ad alcuna incollatura, strappo o sovrapposizione; una sfera e un toro invece non lo sono, perché il toro contiene un "buco" che non può essere eliminato da una deformazione.


Developed by StudentB