Foton (gr. φῶς – światło, w dopełniaczu – φωτός, nazwa stworzona przez Gilberta N. Lewisa[1]) – cząstka elementarna z grupy bozonów, będąca nośnikiem oddziaływań elektromagnetycznych[2] (bozon cechowania). Nie posiada ładunku elektrycznego ani momentu magnetycznego, jego masa spoczynkowa jest zerowa (m0 = 0), a liczba spinowa s ma wartość 1. Wykazuje dualizm korpuskularno-falowy, więc równocześnie ma cechy cząstki i fali elektromagnetycznej.
W fizyce foton jest kwantem pola elektromagnetycznego, np. światła widzialnego. W mechanice kwantowej pole elektromagnetyczne zachowuje się jak zbiór cząstek (fotonów). Z kwantowego punktu widzenia światło jest dużym strumieniem fotonów. Bardzo czułe instrumenty optyczne potrafią rejestrować pojedyncze fotony.
W zależności od energii fotonów, promieniowanie, na które się składają, ma inną nazwę. I tak mówi się (poczynając od najwyższej energii fotonu) o promieniowaniu gamma, rentgenowskim (promieniowaniu X), nadfiolecie, świetle widzialnym, podczerwieni, mikrofalach, falach radiowych (promieniowaniu radiowym). Jednak z fizycznego punktu widzenia wszystkie te rodzaje promieniowania mają jednakową naturę.
Fotony w próżni poruszają się z prędkością światła. W ośrodkach przezroczystych ta prędkość jest mniejsza i zależy od energii. W próżni fotony mogą pokonywać dystanse wielu miliardów lat świetlnych, poruszając się po torach lekko tylko zakrzywianych przez pola grawitacyjne ciał niebieskich. Zakrzywienie to, przy odpowiedniej konfiguracji źródła i masy powodującej zakrzywienie, może prowadzić do efektu soczewkowania grawitacyjnego. Jedynie czarne dziury mają wystarczająco silne pole grawitacyjne, by móc uwięzić światło wewnątrz horyzontu zdarzeń.