Automorfismo de grafos

No campo da matemática da teoria dos grafos, um automorfismo de um grafo é uma forma de simetria em que o grafo é mapeado em si, preservando a conectividade vértice-aresta.

Formalmente, um automorfismo de um grafo G = (V,E) é uma permutação σ do conjunto de vértices V, tal que para qualquer aresta e = (u,v), σ(e) = (σ(u),σ(v)) é também uma aresta. Ou seja, ele é um isomorfismo de grafos de G para ele mesmo.[1] Automorfismos podem ser definidos dessa maneira, tanto para grafos orientados quando para grafos não orientados.

A composição de dois automorfismos é outro automorfismo, e o conjunto de automorfismos de um grafo dado, sob a operação de composição, forma uma grupo, o grupo de automorfismo do grafo. No sentido inverso, pelo teorema de Frucht, todos os grupos podem ser representados como o grupo de automorfismo de um grafo conexo. - Na verdade, de um grafo cúbico.[2][3]

  1. GALLIAN, Joseph A. (1994). Contemporary Abstract Algebra. Lexington, Massachusetts: D. C. Heath. ISBN 0-669-33907-5 
  2. Frucht, R. (1938), «Herstellung von Graphen mit vorgegebener abstrakter Gruppe.», Compositio Mathematica, ISSN 0010-437X (em alemão), 6: 239–250 .
  3. Frucht, R. (1949), «Graphs of degree three with a given abstract group», Canadian Journal of Mathematics, ISSN 0008-414X, 1: 365–378, MR0032987 

Developed by StudentB