Ovaj članak ili jedan njegov dio nije preveden ili je samo djelimično preveden. Ako smatrate da ste sposobni prevesti ga, pogledajte kako uređivati članak, kliknite na link uredi i prevedite ga vodeći računa o standardima Wikipedije i srpskohrvatskog jezika. |
Statistika je oblast matematike koja se bavi sakupljanjem, analizom, interpretacijom, objašnjavanjem i prezentacijom podataka.[1][2] Ona se primenjuje u širokom spektru akademskih disciplina, od fizike do ekonomije i sociologije.
Neke od popularnih definicija su:
Matematički metodi statistike su potekli iz teorije verovatnoće, iz vremena dopisivanja Pjera Ferma i Bleza Paskala (1654). Kristijan Hajgens (1657) je dao prvo poznato naučno tretiranje ove teme. Jakob Bernuli u delu Ars Conjectandi (posthumno, 1713) i Abram d Moavr u delu Doktrina šansi (1718) su statistiku posmatrali kao granu matematike[5] U moderno doba, rad Kolmogorova je bio bitan za formulisanje osnovnog modela teorije verovatnoće koji se koristi u osnovi statistike.
Osnovna podela statistike je na deskriptivnu i inferencijalnu..[6] Deskriptivna statistika bavi se merama centralne tendencije (aritmetička sredina, medijana i mod), merama varijabiliteta (raspon, standardna devijacija, varijanca, interkvartilni raspon, semiinterkvartilni raspon i prosečno odstupanje), kao i grafičkim i tabelarnim prikazivanjem osnovnih statističkih vrednosti. S druge strane, inferencijalna statistika se odnosi na proveravanje postavljenih hipoteza (nultih i afirmativnih/alternativnih), uz pomoć statističkih testova, koeficijenata i njihove značajnosti (t-test, analiza varijance, hi-kvadrat test, koeficijenti asocijacije i korelacije, diskriminaciona analiza, Man-Vitnijev test, Test znaka ...). U statističkom žargonu, deskriptivna statistika se naziva statistikom sa malim s, a inferencijalna statistikom sa velikim S, jer je osnovni cilj deskriptivne statistike da ponudi podatke koji se dalje mogu obrađivati uz pomoć tehnika inferencijalne statistike.[7]
Druga podela se odnosi na tehnike koje se koriste u statistici. Saglasno tome, razlikuje se parametrijska i neparametrijska statistika.[8] U slučaju parametrijske statistike, proračuni se temelje na normalnoj (Gausovoj) distribuciji, dok se u slučaju neparametrijske statistike sprovode testovi koji ne moraju podrazumevati normalnost distribucije podataka kojima raspolažemo. Primeri prve grupe tehnika su: složena analiza varijanse, Pirsonov produkat - koeficijent korelacije, aritmetička sredina, standardna devijacija ... Primeri za drugu grupu tehnika su: Spirmanov koeficijent korelacije, hi-kvadratni test, Kruskal-Valisov test, medijana, moduo i sl.
Statistika je neodvojiva od teorije verovatnoće, koja predstavlja skup matematičkih modela za opisivanje odnosa između ostvarenih događaja (ishoda) i mogućih događaja. Najvažniji koncept teorije vjerovatnoće koji ima široku primenu u statistici je normalna raspodela. Standardna normalna raspodela ima aritmetičku sredinu M = 0 i standardnu devijaciju koja iznosi SD = 1. Udaljenost nekog rezultata (podatka) od aritmetičke sredine, u jedinicama standardne devijacije, predstavlja tzv. z-vrednost. Ukoliko je z-vrednost viša od nule, rezultat se nalazi iznad aritmetičke sredine. U suprotnom, dati rezultat pada ispod proseka.
Kako bi se primenila neka od statističkih tehnika/procedura, potrebno je prvo postaviti adekvatnu hipotezu. Hipoteze mogu biti nulte (gde se ne pretpostavlja razlika između dve ili više grupa ispitanika ili se ne pretpostavlja da će korelacija između nekoliko varijabli biti statistički značajna). Takođe, postoje i afirmativne hipoteze, kojima se pretpostavlja neka statistički značajna razlika ili povezanost.[9]
Primeri za nulte hipoteze su:
Primeri za afirmativne hipoteze su: