Darmstadtium

Darmstadtium, 00Ds
Darmstadtium
Pronunciation
Mass number[281]
Darmstadtium in the periodic table
Hydrogen Helium
Lithium Beryllium Boron Carbon Nitrogen Oxygen Fluorine Neon
Sodium Magnesium Aluminium Silicon Phosphorus Sulfur Chlorine Argon
Potassium Calcium Scandium Titanium Vanadium Chromium Manganese Iron Cobalt Nickel Copper Zinc Gallium Germanium Arsenic Selenium Bromine Krypton
Rubidium Strontium Yttrium Zirconium Niobium Molybdenum Technetium Ruthenium Rhodium Palladium Silver Cadmium Indium Tin Antimony Tellurium Iodine Xenon
Caesium Barium Lanthanum Cerium Praseodymium Neodymium Promethium Samarium Europium Gadolinium Terbium Dysprosium Holmium Erbium Thulium Ytterbium Lutetium Hafnium Tantalum Tungsten Rhenium Osmium Iridium Platinum Gold Mercury (element) Thallium Lead Bismuth Polonium Astatine Radon
Francium Radium Actinium Thorium Protactinium Uranium Neptunium Plutonium Americium Curium Berkelium Californium Einsteinium Fermium Mendelevium Nobelium Lawrencium Rutherfordium Dubnium Seaborgium Bohrium Hassium Meitnerium Darmstadtium Roentgenium Copernicium Nihonium Flerovium Moscovium Livermorium Tennessine Oganesson
Pt

Ds

(Uhq)
meitneriumdarmstadtiumroentgenium
Groupgroup 10
Periodperiod 7
Block  d-block
Electron configuration[Rn] 5f14 6d8 7s2 (predicted)[3] (predicted)
Electrons per shell2, 8, 18, 32, 32, 16, 2 (predicted)[4]
Physical properties
Phase at STPsolid (predicted)[5]
Density (near r.t.)34.8 g/cm3 (predicted)[4]
Atomic properties
Oxidation states(0), (+2), (+4), (+6), (+8) (predicted)[3][6]
Ionization energies
  • 1st: 960 kJ/mol
  • 2nd: 1890 kJ/mol
  • 3rd: 3030 kJ/mol
  • (more) (all estimated)[4]
Atomic radiusempirical: 132 pm (predicted)[4][7]
Covalent radius128 pm (estimated)[8]
Other properties
Natural occurrencesynthetic
Crystal structurebody-centered cubic (bcc)
Body-centered cubic crystal structure for darmstadtium

(predicted)[5]
CAS Number54083-77-1
History
Namingafter Darmstadt, Germany, where it was discovered
DiscoveryGesellschaft für Schwerionenforschung (1994)
Isotopes of darmstadtium
Main isotopes[9] Decay
abun­dance half-life (t1/2) mode pro­duct
279Ds synth 0.2 s α10% 275Hs
SF90%
281Ds synth 14 s SF94%
α6% 277Hs
 Category: Darmstadtium
| references
Preview warning: unknown parameter "electron configuration"
Preview warning: unknown parameter "isotopes"
Preview warning: unknown parameter "category comment"
Preview warning: unknown parameter "block"
Preview warning: unknown parameter "group"
Preview warning: unknown parameter "oxidation states"
Preview warning: unknown parameter "electron configuration re..."
Preview warning: unknown parameter "category"
Preview warning: unknown parameter "period"
Preview warning: unknown parameter "oxidation states comment"

Darmstadtium is a chemical element. It has been named ununnilium (Uun) or eka-platinum but is now named darmstadtium. It has the symbol Ds. It has the atomic number 110. It is a transuranium element.

Darmstadt

The element is named in honor of German city Darmstadt.

Darmstadtium is a radioactive element that does not exist in nature. It has to be made. The isotopes with an atomic mass from 267 to 273 have very short half-lifes. The half life of these isotopes is measured in milliseconds. Isotopes of darmstadtium with an atomic mass of 279 and 281 were synthesised after the other isotopes. Ds-279 and Ds-281 decay more slowly. The isotope with an atomic mass of 279 has a half life of 180 milliseconds and Ds-281 has a half life of 11.1 seconds.

No uses for darmstadtium are known. What darmstadtium looks like is not known because not enough has been made to see it with human eyesight.

  1. "darmstadtium". Lexico UK English Dictionary UK English Dictionary. Oxford University Press. Archived from the original on 2020-03-08.
  2. Darmstadtium. The Periodic Table of Videos. University of Nottingham. September 23, 2010. Retrieved October 19, 2012.
  3. 3.0 3.1 Hoffman, Darleane C.; Lee, Diana M.; Pershina, Valeria (2006). "Transactinides and the future elements". In Morss; Edelstein, Norman M.; Fuger, Jean (eds.). The Chemistry of the Actinide and Transactinide Elements (3rd ed.). Dordrecht, The Netherlands. ISBN 978-1-4020-3555-5.{{cite book}}: CS1 maint: location missing publisher (link)
  4. 4.0 4.1 4.2 4.3 4.4 4.5 Hoffman, Darleane C.; Lee, Diana M.; Pershina, Valeria (2006). "Transactinides and the future elements". In Morss; Edelstein, Norman M.; Fuger, Jean (eds.). The Chemistry of the Actinide and Transactinide Elements (3rd ed.). Dordrecht, The Netherlands: Springer Science+Business Media. ISBN 1-4020-3555-1.
  5. 5.0 5.1 Östlin, A.; Vitos, L. (2011). "First-principles calculation of the structural stability of 6d transition metals". Physical Review B. 84 (11). Bibcode:2011PhRvB..84k3104O. doi:10.1103/PhysRevB.84.113104.
  6. Fricke, Burkhard (1975). "Superheavy elements: a prediction of their chemical and physical properties". Recent Impact of Physics on Inorganic Chemistry. Structure and Bonding. 21: 89–144. doi:10.1007/BFb0116498. ISBN 978-3-540-07109-9. Retrieved 4 October 2013.
  7. 7.0 7.1 Fricke, Burkhard (1975). "Superheavy elements: a prediction of their chemical and physical properties". Recent Impact of Physics on Inorganic Chemistry. 21: 89–144. doi:10.1007/BFb0116498. Retrieved 4 October 2013.
  8. Chemical Data. Darmstadtium - Ds, Royal Chemical Society
  9. Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021). "The NUBASE2020 evaluation of nuclear properties" (PDF). Chinese Physics C. 45 (3): 030001. doi:10.1088/1674-1137/abddae.

Developed by StudentB