Seaborgium

Seaborgium, 00Sg
Seaborgium
Pronunciation/sˈbɔːrɡiəm/ (audio speaker iconlisten) (see-BOR-ghee-əm)
Mass number[269]
Seaborgium in the periodic table
Hydrogen Helium
Lithium Beryllium Boron Carbon Nitrogen Oxygen Fluorine Neon
Sodium Magnesium Aluminium Silicon Phosphorus Sulfur Chlorine Argon
Potassium Calcium Scandium Titanium Vanadium Chromium Manganese Iron Cobalt Nickel Copper Zinc Gallium Germanium Arsenic Selenium Bromine Krypton
Rubidium Strontium Yttrium Zirconium Niobium Molybdenum Technetium Ruthenium Rhodium Palladium Silver Cadmium Indium Tin Antimony Tellurium Iodine Xenon
Caesium Barium Lanthanum Cerium Praseodymium Neodymium Promethium Samarium Europium Gadolinium Terbium Dysprosium Holmium Erbium Thulium Ytterbium Lutetium Hafnium Tantalum Tungsten Rhenium Osmium Iridium Platinum Gold Mercury (element) Thallium Lead Bismuth Polonium Astatine Radon
Francium Radium Actinium Thorium Protactinium Uranium Neptunium Plutonium Americium Curium Berkelium Californium Einsteinium Fermium Mendelevium Nobelium Lawrencium Rutherfordium Dubnium Seaborgium Bohrium Hassium Meitnerium Darmstadtium Roentgenium Copernicium Nihonium Flerovium Moscovium Livermorium Tennessine Oganesson
W

Sg

(Uhn)
dubniumseaborgiumbohrium
Groupgroup 6
Periodperiod 7
Block  d-block
Electron configuration[Rn] 5f14 6d4 7s2[1]
Electrons per shell2, 8, 18, 32, 32, 12, 2
Physical properties
Phase at STPsolid (predicted)[2]
Density (near r.t.)35.0 g/cm3 (predicted)[1][3]
Atomic properties
Oxidation states0, (+3), (+4), (+5), +6[1][4] (parenthesized: prediction)
Ionization energies
  • 1st: 757 kJ/mol
  • 2nd: 1733 kJ/mol
  • 3rd: 2484 kJ/mol
  • (more) (all but first estimated)[1]
Atomic radiusempirical: 132 pm (predicted)[1]
Covalent radius143 pm (estimated)[5]
Other properties
Natural occurrencesynthetic
Crystal structurebody-centered cubic (bcc)
Body-centered cubic crystal structure for seaborgium

(predicted)[2]
CAS Number54038-81-2
History
Namingafter Glenn T. Seaborg
DiscoveryLawrence Berkeley National Laboratory (1974)
Isotopes of seaborgium
Main isotopes[6] Decay
abun­dance half-life (t1/2) mode pro­duct
265Sg synth 8.5 s α 261Rf
265mSg synth 14.4 s α 261mRf
267Sg synth 80 s α17% 263Rf
SF83%
268Sg synth 11 s[7] SF
Preview warning: Infobox Sg isotopes: Decay product missing; pn1, ps1 for "dm1=SF" cat#P
269Sg synth 14 min[8] α 265Rf
271Sg synth 31 s[9] α73% 267Rf
SF27%
Preview warning: Infobox Sg isotopes: Decay product missing; pn2, ps2 for "dm2=SF" cat#P
 Category: Seaborgium
| references
Preview warning: unknown parameter "electron configuration"
Preview warning: unknown parameter "isotopes"
Preview warning: unknown parameter "block"
Preview warning: unknown parameter "electron configuration re..."
Preview warning: unknown parameter "category"
Preview warning: unknown parameter "group"
Preview warning: unknown parameter "period"

Seaborgium is a chemical element. In the past, it has been named eka-tungsten but is now named seaborgium. It has the symbol Sg and it has the atomic number 106. Seaborgium is a radioactive element that does not exist in nature. It has to be made. The most stable isotope is 271Sg. Seaborgium-271 has a half-life of 2.4 minutes.

What Seaborgium looks like is not known because not enough has been made to see it with human eyesight, but since it is in the same period as tungsten in the periodic table, its appearance and may be similar to it.

Glenn Seaborg

The element is named in honor of Glenn Seaborg.

Seaborgium is a transuranium element. This means that it is "beyond" (trans) the element Uranium in the sequence of elements.

Mendeleev predicted that Seaborgium would exist. He called the element eka-tungsten because of its location was near Tungsten in the Periodic Table. The chemistry of seaborgium is like the chemistry of tungsten.

  1. 1.0 1.1 1.2 1.3 1.4 1.5 Hoffman, Darleane C.; Lee, Diana M.; Pershina, Valeria (2006). "Transactinides and the future elements". In Morss; Edelstein, Norman M.; Fuger, Jean (eds.). The Chemistry of the Actinide and Transactinide Elements (3rd ed.). Dordrecht, The Netherlands: Springer Science+Business Media. ISBN 1-4020-3555-1.
  2. 2.0 2.1 Östlin, A.; Vitos, L. (2011). "First-principles calculation of the structural stability of 6d transition metals". Physical Review B. 84 (11). Bibcode:2011PhRvB..84k3104O. doi:10.1103/PhysRevB.84.113104.
  3. Fricke, Burkhard (1975). "Superheavy elements: a prediction of their chemical and physical properties". Recent Impact of Physics on Inorganic Chemistry. 21: 89–144. doi:10.1007/BFb0116498. Retrieved 4 October 2013.
  4. Fricke, Burkhard (1975). "Superheavy elements: a prediction of their chemical and physical properties". Recent Impact of Physics on Inorganic Chemistry. Structure and Bonding. 21: 89–144. doi:10.1007/BFb0116498. ISBN 978-3-540-07109-9. Retrieved 4 October 2013.
  5. "Periodic Table, Seaborgium". Royal Chemical Society. Retrieved 20 February 2017.
  6. Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021). "The NUBASE2020 evaluation of nuclear properties" (PDF). Chinese Physics C. 45 (3): 030001. doi:10.1088/1674-1137/abddae.
  7. "Five new isotopes synthesized at Superheavy Element Factory". Joint Institute for Nuclear Research. 1 February 2023. Retrieved 3 February 2023.
  8. 8.0 8.1 Utyonkov, V. K.; Brewer, N. T.; Oganessian, Yu. Ts.; Rykaczewski, K. P.; Abdullin, F. Sh.; Dimitriev, S. N.; Grzywacz, R. K.; Itkis, M. G.; Miernik, K.; Polyakov, A. N.; Roberto, J. B.; Sagaidak, R. N.; Shirokovsky, I. V.; Shumeiko, M. V.; Tsyganov, Yu. S.; Voinov, A. A.; Subbotin, V. G.; Sukhov, A. M.; Karpov, A. V.; Popeko, A. G.; Sabel'nikov, A. V.; Svirikhin, A. I.; Vostokin, G. K.; Hamilton, J. H.; Kovrinzhykh, N. D.; Schlattauer, L.; Stoyer, M. A.; Gan, Z.; Huang, W. X.; Ma, L. (30 January 2018). "Neutron-deficient superheavy nuclei obtained in the 240Pu+48Ca reaction". Physical Review C. 97 (14320): 014320. Bibcode:2018PhRvC..97a4320U. doi:10.1103/PhysRevC.97.014320. Cite error: Invalid <ref> tag; name "PuCa2017" defined multiple times with different content
  9. Oganessian, Yu. Ts.; Utyonkov, V. K.; Ibadullayev, D.; et al. (2022). "Investigation of 48Ca-induced reactions with 242Pu and 238U targets at the JINR Superheavy Element Factory". Physical Review C. 106 (24612). doi:10.1103/PhysRevC.106.024612. S2CID 251759318.

Developed by StudentB