Bir lityum-iyon veya Li-iyon pil, enerji depolamak için lityum iyonlarının tersine çevrilebilir indirgemesini kullanan şarj edilebilir pil türüdür. Geleneksel lityum iyon pilinin anodu (negatif elektrodu) genelde karbon'dan yapılan grafit'tir. Katot (pozitif elektrot) genellikle metal oksit'tir. Elektrolit genelde bir organik çözücü içindeki lityum tuz'udur.[1][2]
Taşınabilir tüketici elektroniği ve elektrikli araçlarda en çok kullanılan pil türüdür. Ayrıca şebeke ölçeğinde enerji depolama ve askeri ve havacılık uygulamalarında önemli kullanımı vardır. Diğer şarjlı pil teknolojileriyle karşılaştırıldığında, Li-ion piller yüksek enerji yoğunluğuna, az kendi kendine boşalmaya sahiptir ve hafıza etkisi yoktur (ancak LFP hücrelerinde bildirilen küçük bir hafıza etkisi kötü yapılmış hücrelere kadar izlenmiştir).[3]
Kimya, performans, maliyet ve güvenlik özellikleri, lityum iyon pil türlerine göre değişir. Ticari Li-ion pillerinin çoğu, aktif malzemeler olarak ara ekleme bileşiklerini kullanır. Anot veya negatif elektrot genellikle grafit'tir ancak silikon-karbon da giderek daha çok kullanılmaktadır. Hücreler, enerji veya güç yoğunluğuna öncelik verecek şekilde üretilebilir.[4] Elde taşınan elektronik cihazlarda çoğunlukla birlikte yüksek enerji yoğunluğu sunan lityum polimer piller (elektrolit olarak bir polimer jel ile), lityum kobalt oksit (LiCoO2) katot malzemesi ve grafit anot kullanılır.[5][6] Lityum demir fosfat (LiFePO4), lityum manganez oksit (LiMn2O4 spinel veya Li2MnO3-bazlı lityum açısından zengin katmanlı malzemeler, LMR-NMC) ve lityum nikel manganez kobalt oksit (LiNiMnCoO2 veya NMC) daha uzun ömürlü olabilir ve daha iyi hız kapasiteli olabilir. NMC ve türevleri araçlardan kaynaklanan sera gazı emisyonlarını azaltmak için (Yenilenebilir enerji ile birlikte) ana teknolojilerden biri olan elektrikli araçlarda yaygın kullanılır.[7][8]
M. Stanley Whittingham, 1970'lerde interkalasyon elektrotları kavramını keşfetti ve güvenlik sorunlarından muzdarip olmasına ve asla ticarileştirilmemesine rağmen titanyum disülfit katodu ve lityum-alüminyum anodu temel alan ilk şarjlı lityum-iyon pili yaptı.[9] John Goodenough, 1980 yılında lityum kobalt oksiti katot olarak kullanarak bu çalışmayı geliştirdi.[10] 1991 yılında Yoshio Nishi liderliğindeki Sony ve Asahi Kasei ekibi tarafından ticarileştiren Lityum metal yerine karbonlu anotlu modern Li-ion pilin ilk prototipi 1985 yılında Akira Yoshino tarafından geliştirildi.[11]
Lityum-iyon piller, hücreler yanıcı elektrolitlere sahip olduğundan ve hasar gördüğünde veya yanlış şarj edildiğinde patlamalara ve yangınlara yol açabileceğinden, uygun şekilde tasarlanıp üretilmediğinde güvenlik tehlikesi oluşturabilir. Güvenli lityum-iyon pillerin üretiminde birçok gelişme ilerleme kaydetmiştir.[12] Lityum iyon tüm katı hal pilleri, yanıcı elektroliti ortadan kaldırmak için geliştirilmektedir. Uygun olmayan şekilde geri dönüştürülen piller, özellikle zehirli metallerden olmak üzere zehirli atık oluşturabilir ve yangın riski altındadır. Ayrıca, hem lityum hem de pillerde kullanılan diğer önemli stratejik mineraller, lityumun genellikle kurak bölgelerde su yoğun olması ve diğer minerallerin genellikle kobalt gibi ihtilaflı mineraller olması nedeniyle, madenden çıkarmada önemli sorunları vardır. Her iki çevresel sorun da bazı araştırmacıları mineral verimliliğini ve demir-hava pilleri gibi alternatifleri geliştirmeye teşvik etti.
Lityum-iyon piller için araştırma alanları, diğerlerinin yanı sıra kullanım ömrünün uzatılması, enerji yoğunluğunun artırılması, güvenliğin artırılması, maliyetin düşürülmesi ve şarj hızının artırılmasıdır.[13][14] Tipik elektrolitte kullanılan organik çözücülerin yanıcılığı ve uçuculuğuna dayalı olarak güvenliği artırmanın yolu olarak yanıcı olmayan elektrolitler alanında araştırmalar devam etmektedir. Stratejiler arasında sulu lityum-iyon piller, seramik katı elektrolitler, polimer elektrolitler, iyonik sıvılar ve yoğun florlu sistemler bulunur.[15][16][17][18]
Kapasite kaybı yaşamamak için bekleme voltajında (3.6 volt) bekletilmelidir. Tepe voltaj değeri 4.2'dir. Yaklaşık 500 döngüden sonra %10 kapasite azalması olur. Lityum polimer pillere göre daha güvenlidir. Anlık ve sürekli verebildikleri güce göre kullanım alanları değişir, buna ''C'' değeri denir. Örneğin 2000 mAh pilin c değeri 5 ise anlık verebildiği güç 10000 mAh'dır. (Ortalama olarak laptoplarda 2C 4/5/6 amper, scooter vb. araçlarda 5C 10 amper, matkaplarda, yoğun güç gereken yerlerde 10C 20 amper piller kullanılır.) Farklı lityum pil tasarımları ise lityum polimer pil (lithium polymer cell), lityum demir fosfat (LiFePO4) ve lityum titanat pil hücreleridir. Matkap, laptop, robot süpürge ve scooter gibi araçlarda 18650 olarak nitelenen pil vardır.
Commercial lithium ion cells are now optimized for either high energy density or high power density. There is a trade off in cell design between the power and energy requirements.
<ref>
etiketi; E-electric20200604
isimli refler için metin sağlanmadı (Bkz: Kaynak gösterme)