DBSCAN

DBSCAN може знаходити лінійно не роздільні кластери. Цей набір даних не може бути адекватно кластеризовано методом k-середніх або ЕМ-алгоритмом.

DBSCAN (англ. density-based spatial clustering of applications with noise) — алгоритм кластеризації даних, який запропонували Мартін Естер (англ. Martin Ester), Ганс-Петер Крігель, Йорґ Сандер (англ. Jörg Sander) та Сяовей Су (англ. Xiaowei Xu) у 1996 році.[1] Він є алгоритмом кластеризації заснованим на щільності: для заданої множини точок у деякому просторі він відносить в одну групу точки, які розташовані найбільш щільно (точки з багатьма сусідами) та розмічає точки, які лежать в областях з невеликою щільністю (чиї сусіди розташовані занадто далеко) як викиди. DBSCAN є одним з найпоширеніших алгоритмів кластеризації, а також найбільш цитованим у науковій літературі.[2]

  1. Ester, Martin; Kriegel, Hans-Peter; Sander, Jörg; Xu, Xiaowei (1996). Simoudis, Evangelos; Han, Jiawei; Fayyad, Usama M. (ред.). A density-based algorithm for discovering clusters in large spatial databases with noise. Proceedings of the Second International Conference on Knowledge Discovery and Data Mining (KDD-96). AAAI Press. с. 226—231. CiteSeerX 10.1.1.121.9220. ISBN 1-57735-004-9.
  2. Archived copy. Архів оригіналу за 21 квітня 2010. Процитовано 18 квітня 2010.{{cite web}}: Обслуговування CS1: Сторінки з текстом «archived copy» як значення параметру title (посилання) Найбільш цитовані статті по добуванню даних згідно з сервісом Microsoft академічного пошуку DBSCAN має рейтинг 24.

Developed by StudentB