Pin Li-ion

Pin Li-ion
Một pin Li-ion
(dùng cho ô tô điện VinFast VF 8)
Năng lượng riêng100–265 W·h/kg[1][2] (0.36–0.875 MJ/kg)
Mật độ năng lượng250–693 W·h/L[3][4] (0.90–2.43 MJ/L)
Công suất riêng~250-~340 W/kg[1]
Hiệu suất sạc/xả sạc80–90%[5]
Năng lượng/giá bán2.5 W·h/US$[6]
Suất tự xả8% at 21 °C
15% at 40 °C
31% at 60 °C
(per month)[7]
Số lần sạc ước tính400–1200 cycles [8]
Điện áp danh nghĩaNMC 3.6 / 3.85 V, LiFePO4 3.2 V

Pin Li-ion hay pin lithi-ion / pin lithium-ion, có khi viết tắt là LIB, là một loại pin sạc. Trong quá trình sạc, các ion Lithi chuyển động từ cực dương sang cực âm, và ngược lại trong quá trình xả (quá trình sử dụng). LIB thường sử dụng điện cực là các hợp chất mà cấu trúc tinh thể của chúng có dạng lớp (layered structure compounds), khi đó trong quá trình sạc và xả, các ion lithi sẽ xâm nhập và điền đầy khoảng trống giữa các lớp này, nhờ đó phản ứng hóa học xảy ra. Các vật liệu điện cực có cấu trúc tinh thể dạng lớp thường gặp dùng cho cực âm là các hợp chất oxide kim loại chuyển tiếp như LiCoO2, LiMnO2, v.v….; dùng cho điện cực dương là graphite. Dung dịch điện ly của pin cho phép các ion lithi chuyển dịch từ cực này sang cực khác, nghĩa là có khả năng dẫn ion lithi. Tuy nhiên, yêu cầu là dung dịch này không được dẫn điện.

 Khi xả (quá trình sử dụng), pin phóng điện qua mạch ngoài, electron từ anode (cực âm) di chuyển sang cathode (cực dương). Ion ithi di chuyển trong pin, cũng từ cực âm sang cực dương. Khi sạc, dưới điện áp sạc, electron di chuyển đến anode (lúc này trở thành cực dương), để cân bằng điện, trong lòng pin, ion lithi di chuyển từ cathode (lúc này trở thành cực âm) sang anode.

LIB thường được dùng cho những thiết bị điện di động, phổ biến nhất là pin sạc cho các thiết bị điện tử cầm tay. Pin Li-ion có mật độ năng lượng cao, hiệu ứng nhớ rất nhỏ[9], và ít bị tự xả. Hiện nay ở các nước phát triển, LIB đang được chú trọng phát triển trong quân đội, ứng dụng cho các phương tiện di chuyển chạy điện và kĩ thuật hàng không[10]. Nó được kì vọng sẽ thay thế cho ắc quy chì trong ô tô, xe máy và các loại xe điện. Hơn nữa, việc thay thế cho ắc quy chì còn hứa hẹn việc đảm bảo môi trường sạch, nâng cao an toàn sử dụng do tránh được việc sử dụng dung dịch điện ly chứa acid, và hạn chế phát thải kim loại nặng ra môi trường, trong khi pin Li-ion vẫn đảm bảo một điện thế ngang với ắc quy. 

Thành phần hóa học, hiệu năng, giá thành và độ an toàn là các yếu tố cơ bản quy định các loại LIB khác nhau. Các thiết bị điện cầm tay (như điện thoại di động, laptop) hiện nay hầu như sử dụng LiCoO2 (viết tắt LCO) lithium cobalt oxide làm cực âm. Chất này có mật độ năng lượng cao, nhưng kém an toàn, đặc biệt nguy hiểm khi pin bị rò rỉ. Lithium sắt phosphat (LiFePO4, hay LFP), lithi mangan oxide (LiMn2O4, Li2MnO3, hay gọi chung là LMO) và lithi nickel mangan cobalt oxide (LiNiMnCoO2, hay NMC) là các vật liệu dương cực phổ biển khác, tuy nhiên chúng có mật độ năng lượng thấp hơn LCO, nhưng lại có vòng đời lâu hơn và an toàn hơn. Những pin dùng các vật liệu này thường được dùng trong các thiết bị điện y tế. Đặc biệt NMC hiện nay là ứng viên hàng đầu cho pin ứng dụng trong xe chạy điện. Lithi nickel cobalt nhôm oxide (LiNiCoAlO2 hay NCA) và lithi titanat (Li4Ti5O12 hay LTO) được sử dụng trong những mục đích đặc biệt. Pin lithi-lưu huỳnh hay pin lithi-sulfide là loại pin mới được phát triển, mang nhiều triển vọng nhờ hiệu năng cao và khối lượng nhỏ. 

Do pin lithi-ion chứa dung dịch điện ly dễ cháy, nên nó trở nên đặc biệt nguy hiểm khi áp suất bên trong cell pin tăng cao khi được sạc và xả với cường độ dòng điện lớn. Nếu như một viên pin được sạc quá nhanh, nó có thể gây đoản mạch dẫn đến cháy nổ.[11] Do nguy cơ này, các quy chuẩn kiểm tra dành cho LIB nghiêm ngặt hơn cho các loại pin dung dịch điện ly acid rất nhiều.[12][13] Một ví dụ về lỗi pin gây ra những thiệt hại nghiêm trọng là sự cố về pin của Samsung Galaxy Note 7 năm 2016.[14][15]

Các lĩnh vực nghiên cứu về pin lithium-ion bao gồm kéo dài vòng đời pin, mật độ năng lượng, an toàn và giảm chi phí cho pin.

  1. ^ a b “Rechargeable Li-Ion OEM Battery Products”. Panasonic.com. Lưu trữ bản gốc ngày 13 tháng 4 năm 2010. Truy cập ngày 23 tháng 4 năm 2010.
  2. ^ “Panasonic Develops New Higher-Capacity 18650 Li-Ion Cells; Application of Silicon-based Alloy in Anode”. greencarcongress.com. Truy cập ngày 31 tháng 1 năm 2011.
  3. ^ “NCR18650B” (PDF). Panasonic. Bản gốc (PDF) lưu trữ ngày 17 tháng 8 năm 2018. Truy cập ngày 7 tháng 10 năm 2016.
  4. ^ “NCR18650GA” (PDF). Truy cập ngày 2 tháng 7 năm 2017.
  5. ^ Valøen, Lars Ole and Shoesmith, Mark I. (2007). The effect of PHEV and HEV duty cycles on battery and battery pack performance (PDF). 2007 Plug-in Highway Electric Vehicle Conference: Proceedings. Truy cập ngày 11 tháng 6 năm 2010.
  6. ^ Lawson Barrie Electrochemical Energy[liên kết hỏng] Woodbank Communications Ltd
  7. ^ Abe, H.; Murai, T.; Zaghib, K. (1999). “Vapor-grown carbon fiber anode for cylindrical lithium ion rechargeable batteries”. Journal of Power Sources. 77 (2): 110–115. Bibcode:1999JPS....77..110A. doi:10.1016/S0378-7753(98)00158-X.
  8. ^ Battery Types and Characteristics for HEV Lưu trữ 2015-05-20 tại Wayback Machine ThermoAnalytics, Inc., 2007. Truy cập ngày 11 tháng 6 năm 2010.
  9. ^ “Memory effect now also found in lithium-ion batteries”. Truy cập ngày 5 tháng 8 năm 2015.
  10. ^ Ballon, Massie Santos (ngày 14 tháng 10 năm 2008). “Electrovaya, Tata Motors to make electric Indica”. cleantech.com. Bản gốc lưu trữ ngày 9 tháng 5 năm 2011. Truy cập ngày 11 tháng 6 năm 2010.
  11. ^ Hislop, Martin (ngày 1 tháng 3 năm 2017). “Solid-state EV battery breakthrough from Li-ion battery inventor John Goodenough”. North American Energy News. The American Energy News. Truy cập ngày 15 tháng 3 năm 2017.
  12. ^ IEC 62133. Secondary cells and batteries containing alkaline or other non-acid electrolytes – Safety requirements for portable sealed secondary cells, and for batteries made from them, for use in portable applications (2.0 ed.). International Electrotechnical Commission. December 2012. ISBN 978-2-83220-505-1.
  13. ^ Millsaps, C. (ngày 10 tháng 7 năm 2012). Second Edition of IEC 62133: The Standard for Secondary Cells and Batteries Containing Alkaline or Other Non-Acid Electrolytes is in its Final Review Cycle. Truy cập from Battery Power Online (ngày 10 tháng 1 năm 2014)
  14. ^ Fowler, Suzanne (ngày 21 tháng 9 năm 2016). "Samsung's Recall - The Problem with Lithium Ion Batteries"New York Times. New York. Truy cập ngày 15 tháng 3 năm 2016.
  15. ^ "Samsung recall for Galaxy Note 7" Lưu trữ 2016-09-02 tại Wayback Machine. Truy cập 2016-09-18.

Developed by StudentB