Aktivierungsenergie

Die Aktivierungsenergie, geprägt 1889 von Svante Arrhenius, ist eine energetische Barriere, die bei einer chemischen Reaktion von den Reaktionspartnern überwunden werden muss. Allgemein gilt: Je niedriger die Aktivierungsenergie, desto schneller verläuft die Reaktion. Eine hohe Aktivierungsenergie hemmt Reaktionen, die wegen fester Bindung der Endprodukte aus energetischen Gründen zu erwarten wären, und verhindert oder verzögert damit die Einstellung eines chemischen Gleichgewichts. So kann eine Mischung aus Methan und dem Sauerstoff der Luft bei Standardbedingungen nahezu unverändert existieren (d. h. die Reaktion läuft unmessbar langsam ab), obwohl die exergone Reaktion zu Kohlendioxid und Wasser aus thermodynamischer Sicht „spontan“ ablaufen sollte. Die Aktivierungsenergie nach Arrhenius ist eine empirische Größe, die sich durch die hohe Temperaturabhängigkeit der Geschwindigkeit von vielen chemischen Reaktionen ermitteln lässt.[1]

Allgemein werden alle Prozesse als aktivierte Prozesse bezeichnet, bei denen eine energetische Barriere überwunden werden muss, um ein thermodynamisches System von einem Zustand in einen anderen zu überführen. Hierzu zählen neben chemischen Reaktionen im engeren Sinne auch zahlreiche andere Prozesse wie Änderungen der Konformation, Keimbildung, Kristallisation, Kavitation oder die Entstehung von Brüchen oder Erdbeben.[2]

  1. Eintrag zu activation energy (Arrhenius activation energy). In: IUPAC (Hrsg.): Compendium of Chemical Terminology. The “Gold Book”. doi:10.1351/goldbook.A00102 – Version: 2.3.2.
  2. Jan Wedekind, Reinhard Strey: New method to analyze simulations of activated processes. In: Journal of Chemical Physics, 2007, Band 126, 134103, doi:10.1063/1.2713401.

Developed by StudentB